Liouville Properties and Critical Value of Fully Nonlinear Elliptic Operators

نویسنده

  • MARTINO BARDI
چکیده

We prove some Liouville properties for suband supersolutions of fully nonlinear degenerate elliptic equations in the whole space. Our assumptions allow the coefficients of the first order terms to be large at infinity, provided they have an appropriate sign, as in OrnsteinUhlenbeck operators. We give two applications. The first is a stabilization property for large times of solutions to fully nonlinear parabolic equations. The second is the solvability of an ergodic Hamilton-Jacobi-Bellman equation that identifies a unique critical value of the operator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouville-type theorems for fully nonlinear elliptic equations and systems in half spaces

In [LWZ], we established Liouville-type theorems and decay estimates for solutions of a class of high order elliptic equations and systems without the boundedness assumptions on the solutions. In this paper, we continue our work in [LWZ] to investigate the role of boundedness assumption in proving Liouville-type theorems for fully nonlinear equations. We remove the boundedness assumption of sol...

متن کامل

A Liouville-Gelfand Equation for k-Hessian Operators

In this paper we establish existence and multiplicity results for a class of fully nonlinear elliptic equations of k-Hessian type with exponential nonlinearity. In particular, we characterize the precise dependence of the multiplicity of solutions with respect to both the space dimension and the value of k. The choice of exponential nonlinearity is motivated by the classical Liouville-Gelfand p...

متن کامل

Degenerate Conformally Invariant Fully Nonlinear Elliptic Equations

There has been much work on conformally invariant fully nonlinear elliptic equations and applications to geometry and topology. See for instance [17], [5], [4], [10], [14], [9], and the references therein. An important issue in the study of such equations is to classify entire solutions which arise from rescaling blowing up solutions. Liouville type theorems for general conformally invariant fu...

متن کامل

Harnack Inequalities and ABP Estimates for Nonlinear Second-Order Elliptic Equations in Unbounded Domains

In this paper we are concerned with fully nonlinear uniformy elliptic operators with a superlinear gradient term. We look for local estimates, such as weak Harnack inequality and local Maximum Principle, and their extension up to the boundary. As applications, we deduce ABP type estimates and weak Maximum Principles in general unbounded domains, a strong Maximum principle and a Liouville type t...

متن کامل

GLOBAL BIFURCATION PROBLEMS ASSOCIATED WITH k-HESSIAN OPERATORS

In this paper we study global bifurcation phenomena for a class of nonlinear elliptic equations governed by the h-Hessian operator. The bifurcation phenomena considered provide new methods for establishing existence results concerning fully nonlinear elliptic equations. Applications to the theory of critical exponents and the geometry of k-convex functions are considered. In addition, a related...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016